15-2: Even more practice describing regions

For each of the four practice examples below:
Draw the region and set up the bounds for a double integral both ways: bottom/top and left/right.

$$
\iint_{D} f(x, y) d A=\int_{a}^{b}\left(\int_{\text {BOTTOM }(x)}^{\operatorname{TOP}(x)} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{L E F T(y)}^{R I G H T(y)} f(x, y) d x\right) d y
$$

Practice Example 1: Consider the region, D, bounded by the curves $y=\sqrt{x}, x=0, y=3$.

Practice Example 2: Consider the region, D, bounded by the curves $y=\sqrt{x}, x=9, y=0$.

Practice Example 3: Consider the region, D, bounded by the curves $y=x^{2}, y=2 x+3$.

Practice Example 4: Consider the region, D, bounded by the curves $y=x^{3}, y=4 x$.

For more practice with this type of problems, read 15-2, see 15-2 lecture notes, attempt 15-2 homework and see any old second midterm. I also made a practice sheet about regions that I emailed out last week, check that out again.

For the two examples below:

Draw the region that goes with the given double integral, then reverse the order of integration.

Example 5: $\int_{0}^{3}\left(\int_{x^{2}}^{3 x} f(x, y) d y\right) d x$

Example 6: $\int_{0}^{4}\left(\int_{6}^{2 y+6} f(x, y) d x\right) d y$

For more practice with this type of problems, see my 15-2 and 15-3 review sheet (I have a matching puzzle game where you get to try to reverse integrals and match them up). You can also see a bunch of these problems in the textbook, in my lecture notes, in homework and in old exams.

